Blood-brain barrier peptides (BBPs) can cross the blood-brain barrier based on various mechanisms and have a variety of biomedical applications. As experimental methods for the prediction of BBPs are laborious and expensive, the development of computational methods are necessary for identifying BBPs on a large scale.
BBPpred is a web application used to identify BBPs. More specifically, we have developed a logistic regression classifier based on feature representation learning scheme that learns the most discriminative features from existing feature descriptors in a supervised way. It shows superior results in independent test set.
BBPpred: machine learning based approach for blood-brain barrier peptides prediction